صورة الغلاف المحلية
صورة الغلاف المحلية
عرض عادي

Representation learning for natural language processing / Zhiyuan Liu, Yankai Lin, Maosong Sun, editors

المساهم (المساهمين):نوع المادة : نصنصالناشر:Singapore : Springer, 2023الطبعات:Second editionوصف:1 online resource (xx, 521 pages) : color illustrationsنوع المحتوى:
  • text
نوع الوسائط:
  • computer
نوع الناقل:
  • online resource
تدمك:
  • 9789819916009
  • 9819916003
  • 9789819915996
الموضوع:النوع/الشكل:تصنيف مكتبة الكونجرس:
  • QA76.9.N38
موارد على الانترنت:
المحتويات:
Chapter 1. Representation Learning and NLP -- Chapter 2. Word Representation -- Chapter 3. Compositional Semantics -- Chapter 4. Sentence Representation -- Chapter 5. Document Representation -- Chapter 6. Sememe Knowledge Representation -- Chapter 7. World Knowledge Representation -- Chapter 8. Network Representation -- Chapter 9. Cross-Modal Representation -- Chapter 10. Resources -- Chapter 11. Outlook
ملخص:This book provides an overview of the recent advances in representation learning theory, algorithms, and applications for natural language processing (NLP), ranging from word embeddings to pre-trained language models. It is divided into four parts. Part I presents the representation learning techniques for multiple language entries, including words, sentences and documents, as well as pre-training techniques. Part II then introduces the related representation techniques to NLP, including graphs, cross-modal entries, and robustness. Part III then introduces the representation techniques for the knowledge that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, legal domain knowledge and biomedical domain knowledge. Lastly, Part IV discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing. As compared to the first edition, the second edition (1) provides a more detailed introduction to representation learning in Chapter 1; (2) adds four new chapters to introduce pre-trained language models, robust representation learning, legal knowledge representation learning and biomedical knowledge representation learning; (3) updates recent advances in representation learning in all chapters; and (4) corrects some errors in the first edition. The new contents will be approximately 50%+ compared to the first edition. This is an open access book
المقتنيات
نوع المادة المكتبة الحالية رقم الطلب رابط URL حالة تاريخ الإستحقاق الباركود حجوزات مادة
مصدر رقمي مصدر رقمي UAE Federation Library | مكتبة اتحاد الإمارات Online Copy | نسخة إلكترونية رابط إلى المورد لا يعار
إجمالي الحجوزات: 0

Chapter 1. Representation Learning and NLP -- Chapter 2. Word Representation -- Chapter 3. Compositional Semantics -- Chapter 4. Sentence Representation -- Chapter 5. Document Representation -- Chapter 6. Sememe Knowledge Representation -- Chapter 7. World Knowledge Representation -- Chapter 8. Network Representation -- Chapter 9. Cross-Modal Representation -- Chapter 10. Resources -- Chapter 11. Outlook

This book provides an overview of the recent advances in representation learning theory, algorithms, and applications for natural language processing (NLP), ranging from word embeddings to pre-trained language models. It is divided into four parts. Part I presents the representation learning techniques for multiple language entries, including words, sentences and documents, as well as pre-training techniques. Part II then introduces the related representation techniques to NLP, including graphs, cross-modal entries, and robustness. Part III then introduces the representation techniques for the knowledge that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, legal domain knowledge and biomedical domain knowledge. Lastly, Part IV discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing. As compared to the first edition, the second edition (1) provides a more detailed introduction to representation learning in Chapter 1; (2) adds four new chapters to introduce pre-trained language models, robust representation learning, legal knowledge representation learning and biomedical knowledge representation learning; (3) updates recent advances in representation learning in all chapters; and (4) corrects some errors in the first edition. The new contents will be approximately 50%+ compared to the first edition. This is an open access book

اضغط على الصورة لمشاهدتها في عارض الصور

صورة الغلاف المحلية
شارك

أبوظبي، الإمارات العربية المتحدة

reference@ecssr.ae

97124044780 +

حقوق النشر © 2026 مركز الإمارات للدراسات والبحوث الاستراتيجية جميع الحقوق محفوظة