Green nanotechnology : solutions for sustainability and energy in the built environment / Geoffrey B. Smith, Claes G. Granqvist.
نوع المادة : نصالناشر:Boca Raton, FL : CRC Press, [2011]تاريخ حقوق النشر: copyright 2011وصف:xxiii, 447 pages, [12] pages of plates : illustrations (some color) ; 25 cmنوع المحتوى:- text
- unmediated
- volume
- 9781420085327 (hbk)
- 1420085328 (hbk)
- TH880 S65 2011
نوع المادة | المكتبة الحالية | رقم الطلب | رقم النسخة | حالة | تاريخ الإستحقاق | الباركود | |
---|---|---|---|---|---|---|---|
كتاب | UAE Federation Library | مكتبة اتحاد الإمارات General Collection | المجموعات العامة | TH880 S65 2011 (إستعراض الرف(يفتح أدناه)) | C.1 | Library Use Only | داخل المكتبة فقط | 30010000017813 |
Browsing UAE Federation Library | مكتبة اتحاد الإمارات shelves, Shelving location: General Collection | المجموعات العامة إغلاق مستعرض الرف(يخفي مستعرض الرف)
Includes bibliographical references and index.
Chapter 1. Green Nanotechnology: Introduction and Invitation -- 1.1. What Is Nanotechnology? -- 1.2. What Is Green Nanotechnology? -- 1.3. Some Basic Issues in Nanoscience -- 1.4. Nanoscience, Dimensionality, and Thin Films -- 1.5. Outdoing Nature in Exploiting Complexity -- 1.6. Energy Supply and Demand -- 1.7. Energy and Development -- References -- Chapter 2. In Harmony with the Environment: Nature's Energy Flows and Desired Materials Properties -- 2.1. Global Energy Flows -- 2.2. Radiation in Our Ambience: An Overview -- 2.3. Interaction between Radiation and Materials -- 2.3.1. Fundamentals Based on Energy Conservation -- 2.3.2. Directionality and Polarization Dependence -- 2.4. Beam and Diffuse Radiation -- 2.4.1. General Considerations -- 2.4.2. Energy Flows in Diffuse and Nonparallel Radiation Beams -- 2.5. Hemispherical Absorptance -- 2.6. Solar and Daylighting Performance Parameters -- 2.7. Thermal Radiation and Spectral Properties of the Atmosphere -- 2.7.1. Blackbody Emittance -- 2.7.2. The Sky Window -- 2.8. Dynamical Environmental Properties -- 2.8.1. General Considerations -- 2.8.2. Solar Energy and Daylight Dynamics: The Sun's Path -- 2.9. Materials for Optimized Use of the Spectral, Directional, and Dynamical Properties of Solar Energy and Sky Radiation -- 2.9.1. Opaque Materials -- 2.9.2. Transparent Materials -- 2.9.3. Other Generic Classes of Optical Properties for Radiation Control -- 2.10. Thermal and Density Gradients in the Atmosphere and Oceans -- 2.11. Performance of Energy Systems: Thermodynamics and Value -- References -- Chapter 3. Optical Materials Science for Green Nanotechnology: The Basics -- 3.1. Light and Nanostructures -- 3.1.1. Local Fields and Far Fields -- 3.1.2. Refractive Index and Absorption Coefficient -- 3.2. Spectral Properties of Uniform Materials -- 3.2.1. Insulators and Liquids -- 3.2.2. Conductors, Semiconductors, and Superconductors -- 3.2.3. Chromogenic Materials -- 3.3. Plasmonic Materials in General -- 3.4. Materials for Electron-Based Plasmonics: Mirrors for Visible and Infrared Light -- 3.5. Ionic-Based Materials with Narrow-Band Infrared Properties -- 3.5.1. Plasmonics Once Again -- 3.5.2. Phonon Absorption -- 3.5.3. Infrared Transparency -- 3.6. Generic Classes of Spectrally Selective Materials -- 3.7. Thin Films for Controlling Spectral Properties and Local Light Intensities -- 3.8. Nanoparticle Optics -- 3.8.1. Transparent and Translucent Materials -- 3.8.2. Some Basic Models -- 3.9. Optical Homogenization of Nanocomposites -- 3.9.1. Models for Particle-and Inclusion-Based Composites -- 3.9.2. Invisibility, Effective Medium Models, and Critical Percolation -- 3.9.3. Core-Shell Random Unit Cells and Actual Core-Shell Particles -- 3.10. Surface Plasmon Resonances in Films, Particles, and "Rectennas" -- 3.11. Temporary "Storage" of Light at Resonances and in Evanescent Fields -- 3.11.1. General Considerations -- 3.11.2. Evanescent Optical Fields and How They Can Be Used -- References -- Chapter 4. Visual Indoors-Outdoors Contact and Daylighting: Windows -- 4.1. General Introduction -- 4.1.1. Strategies for Energy Efficiency -- 4.1.2. Uncoated Glass and Plastic Foil -- 4.2. Spectral Selectivity: The Energy Efficiency That Is Possible -- 4.3. Spectral Selectivity of Noble-Metal-Based Films -- 4.3.1. Thin Metal Films Are Not Bulk-Like -- 4.3.2. Very Thin Metal Films Are Nanomaterials -- 4.3.3. Toward a Quantitative Theoretical Model for the Optical Properties -- 4.3.4. Multilayer Films for Spectrally Selective Windows -- 4.4. Spectral Selectivity of Oxide-Semiconductor-Based Films -- 4.4.1. Some Characteristic Properties -- 4.4.2. Typical Nanostructures of ITO Films -- 4.4.3. Theoretical Models for the Optical and Electrical Properties of ITO Films -- 4.4.4. Computed Optical Properties -- 4.5. Spectral Selectivity: Novel Developments for Films and Foils -- 4.5.1. Silver-Based Nanowire Meshes -- 4.5.2. Carbon Nanotubes and Graphene -- 4.5.3. Foils with Conducting Nanoparticles -- 4.5.4. "Holey" Metal Films -- 4.5.5. Photonic Crystals -- 4.6. Optimized Angular Properties: The Energy Efficiency That Is Possible -- 4.7. Angular Selectivity of Films with Inclined Columnar Nanostructures -- 4.8. Chromogenics: The Energy Efficiency That Is Possible -- 4.9. Photochromics -- 4.10. Thermochromics -- 4.10.1. Metal-Insulator Transition and Its Nanofeatures in VO2 -- 4.10.2. Thermochromism in V02-Based Films, and How to Adjust the Metal-Insulator' Transition -- 4.10.3. How to Enhance the Luminous Transmittance in V02 -- 4.11. Electrochromics -- 4.11.1. How Do Electrochromic Devices Work? -- 4.11.2. Facile Ion Movement Due to Favorable Nanostructures -- 4.11.3. What Causes the Optical Absorption? -- 4.11.4. Some Device Properties -- 4.11.5. Alternative Electrochromic Devices -- References -- Chapter 5. Electric Lighting and Daylighting: Luminaires -- 5.1. Lighting: Past, Present, and Future -- 5.2. Daylighting Technology: The "Cool" Option -- 5.2.1. Roof Glazing and Skylights -- 5.2.2. Mirror Light Pipes -- 5.2.3. Daylight Redirecting Structures for Facades -- 5.3. Dielectric Mirrors Based on Nanostructure -- 5.4. Luminescent Solar Concentrators for Daylighting and Solar Power -- 5.4.1. Devices for Generating Daylight-Like Radiation -- 5.4.2. Devices with Solar Cells and Mirrors -- 5.4.3. Light Trapping in Light Guides: Getting It All Out -- 5.5. Light-Diffusing Transmitting Materials -- 5.5.1. Polymer Diffusers -- 5.5.2. End-Lit Long Continuous Light Sources -- 5.5.3. Light Extraction from Light Pipes and in LCD Displays -- 5.6. Advanced Electronic Lighting Concepts -- 5.6.1. Semiconductor Light-Emitting Diodes -- 5.6.2. Organic Light-Emitting Diodes -- 5.6.3. Nanostructures for Improved LED Performance -- 5.6.4. Emerging Lamp Technologies -- 5.6.5. Concluding Remarks -- References -- Chapter 6. Heat and Electricity: Solar Collectors and Solar Cells -- 6.1. Solar Thermal Materials and Devices -- 6.1.1. Spectral Selectivity and Its Importance -- 6.1.2. Principles for Spectral Selectivity -- 6.1.3. Selectively Solar-Absorbing Coatings Based on Nanoparticles: Some Practical Examples -- 6.1.4. Colored Absorbers and Paints: Novel Developments -- 6.2. Photovoltaic Materials and Devices -- 6.2.1. Technology Overview -- 6.2.2. Nanofeatures for Boosting the Efficiency of Silicon-Based Solar Cells -- 6.2.3. Dye-Sensitized Solar Cells -- 6.2.4. Organic Solar Cells -- References -- Chapter 7. Coolness: High-Albedo Surfaces and Sky Cooling Devices -- 7.1. Two Cooling Strategies -- 7.1.1. High-Albedo Surfaces -- 7.1.2. Sky Cooling -- 7.2. City Heating, Global Cooling, and Summer Blackouts -- 7.2.1. Urban Heat Islands -- 7.2.2. Global Cooling by Increased Albedo -- 7.2.3. Avoiding Summer Blackouts -- 7.3. High-Albedo Paints for Cool Buildings -- 7.3.1. How Cool Can a Solar Exposed Roof Get? -- 7.3.2. Colored Paints with High Solar Reflectance -- 7.3.3. Mechanisms and Nanostructures for Colored "Cool" Paints -- 7.4. Sky Cooling to Subambient Temperatures -- 7.4.1. Sky Radiance -- 7.4.2. Spectral Selectivity and Sky Cooling: Idealized Surfaces -- 7.4.3. Calculated Cooling for Ideal and Practical Materials -- 7.4.4. Some Practical Surfaces for Sky Cooling: Bulk-Type Solids -- 7.4.5. Nanotechnology for Optimum Sky Radiators: Computed and Measured Data -- 7.4.6. Practical Sky Cooling: Systems and Data -- 7.4.7. Amplifying Sky Cooling with Heat Mirrors -- 7.4.8. Impact of Solar Irradiance on Sky Cooling -- 7.5. Water Condensation Using Sky Cooling -- 7.6. A Role for Cooling and Waste Heat in Electric Power Generation -- 7.7. Electronic Cooling and Nanotechnology -- 7.8. Whither Cooling? -- 7.8.1. Some Environmental and Health-Related Benefits --
7.8.2. Cooling Plus -- References -- Chapter 8. Supporting Nanotechnologies: Air Sensing and Cleaning, Thermal Insulation, and Electrical Storage -- 8.1. Air Quality and Air Sensing -- 8.1.1. The Sick Building Syndrome -- 8.1.2. Gas Sensing with Nanoporous Metal Oxides: General -- 8.1.3. Gas Sensing with Nanoporous Metal Oxides: Illustrative Examples -- 8.2. Photocatalysis for Cleaning -- 8.2.1. General -- 8.2.2. Self-Cleaning Surfaces -- 8.2.3. Air Purification -- 8.3. Thermal Insulation with Nanomaterials -- 8.3.1. Thermal Conductance of Porous and Nanoporous Materials -- 8.3.2. Vacuum Insulation Panels -- 8.3.3. Silica Aerogel -- 8.4. Green Energy Storage -- 8.4.1. Energy Storage: Survey of a "Missing Link" -- 8.4.2. Electrical Storage Using Electrochemistry -- 8.4.3. Electrochemical Super- and Ultracapacitors -- 8.4.4. Nanomaterials for Advanced Batteries -- References -- Chapter 9. Conclusions: Nanotechnologies for a Sustainable Future -- 9.1. Energy and the Future -- 9.2. New Technologies and Growing Uptake of Proven Technologies -- 9.3. Toward a "Nanoworld" -- References -- Appendix 1. Thin-Film Deposition -- Appendix 2. Abbreviations, Acronyms, and Symbols.
This book explores the science and technology of tiny structures that have a huge potential to improve quality of life while simultaneously achieving reductions in the use of fossil fuels. It examines energy flows in nature and how the optical properties of materials can be designed to harmonize with those flows. It then discusses the properties that can be achieved in real materials to take advantage of nature's energy flows.