A Gentle Introduction to Data, Learning, and Model Order Reduction : Techniques and Twinning Methodologies / Francisco Chinesta, Angelo Pasquale, Elías Cueto, Victor Champaney, Chady Ghnatios, Amine Ammar, Nicolas Hascoët, David González, Icíar Alfaro, and Daniele Di Lorenzo.
نوع المادة :
- text
- computer
- online resource
- 9783031875724
نوع المادة | المكتبة الحالية | رقم الطلب | رابط URL | حالة | تاريخ الإستحقاق | الباركود | حجوزات مادة | |
---|---|---|---|---|---|---|---|---|
![]() |
UAE Federation Library | مكتبة اتحاد الإمارات Online Copy | نسخة إلكترونية | رابط إلى المورد | لا يعار |
Abstract -- Extended summary -- Part 1.Around Data -- Part 2.Around Learning -- Part 3. Around Reduction -- Part 4. Around Data Assimilation & Twinning.
This open access book explores the latest advancements in simulation performance, driven by model order reduction, informed and augmented machine learning technologies and their combination into the so-called hybrid digital twins. It provides a comprehensive review of three key frameworks shaping modern engineering simulations: physics-based models, data-driven approaches, and hybrid techniques that integrate both. The book examines the limitations of traditional models, the role of data acquisition in uncovering underlying patterns, and how physics-informed and augmented learning techniques contribute to the development of digital twins. Organized into four sections--Around Data, Around Learning, Around Reduction, and Around Data Assimilation & Twinning--this book offers an essential resource for researchers, engineers, and students seeking to understand and apply cutting-edge simulation methodologies
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2025. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.