صورة الغلاف المحلية
صورة الغلاف المحلية
عرض عادي

A Gentle Introduction to Data, Learning, and Model Order Reduction : Techniques and Twinning Methodologies / Francisco Chinesta, Angelo Pasquale, Elías Cueto, Victor Champaney, Chady Ghnatios, Amine Ammar, Nicolas Hascoët, David González, Icíar Alfaro, and Daniele Di Lorenzo.

بواسطة:المساهم (المساهمين):نوع المادة : ملف الحاسوبملف الحاسوباللغة: الإنجليزية السلاسل:Studies in Big Data Series ; v.174الناشر:Cham : Springer, 2025تاريخ حقوق النشر: 2025الطبعات:First editionوصف:1 online resource (378 pages)نوع المحتوى:
  • text
نوع الوسائط:
  • computer
نوع الناقل:
  • online resource
تدمك:
  • 9783031875724
الموضوع:النوع/الشكل:تنسيقات مادية إضافية:Print version:: A Gentle Introduction to Data, Learning, and Model Order Reductionموارد على الانترنت:
المحتويات:
Abstract -- Extended summary -- Part 1.Around Data -- Part 2.Around Learning -- Part 3. Around Reduction -- Part 4. Around Data Assimilation & Twinning.
ملخص:This open access book explores the latest advancements in simulation performance, driven by model order reduction, informed and augmented machine learning technologies and their combination into the so-called hybrid digital twins. It provides a comprehensive review of three key frameworks shaping modern engineering simulations: physics-based models, data-driven approaches, and hybrid techniques that integrate both. The book examines the limitations of traditional models, the role of data acquisition in uncovering underlying patterns, and how physics-informed and augmented learning techniques contribute to the development of digital twins. Organized into four sections--Around Data, Around Learning, Around Reduction, and Around Data Assimilation & Twinning--this book offers an essential resource for researchers, engineers, and students seeking to understand and apply cutting-edge simulation methodologies
قوائم هذه المادة تظهر في: Electronic Books | الكتب الإلكترونية
المقتنيات
نوع المادة المكتبة الحالية رقم الطلب رابط URL حالة تاريخ الإستحقاق الباركود حجوزات مادة
مصدر رقمي مصدر رقمي UAE Federation Library | مكتبة اتحاد الإمارات Online Copy | نسخة إلكترونية رابط إلى المورد لا يعار
إجمالي الحجوزات: 0

Abstract -- Extended summary -- Part 1.Around Data -- Part 2.Around Learning -- Part 3. Around Reduction -- Part 4. Around Data Assimilation & Twinning.

This open access book explores the latest advancements in simulation performance, driven by model order reduction, informed and augmented machine learning technologies and their combination into the so-called hybrid digital twins. It provides a comprehensive review of three key frameworks shaping modern engineering simulations: physics-based models, data-driven approaches, and hybrid techniques that integrate both. The book examines the limitations of traditional models, the role of data acquisition in uncovering underlying patterns, and how physics-informed and augmented learning techniques contribute to the development of digital twins. Organized into four sections--Around Data, Around Learning, Around Reduction, and Around Data Assimilation & Twinning--this book offers an essential resource for researchers, engineers, and students seeking to understand and apply cutting-edge simulation methodologies

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2025. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

اضغط على الصورة لمشاهدتها في عارض الصور

صورة الغلاف المحلية
شارك

أبوظبي، الإمارات العربية المتحدة

reference@ecssr.ae

97124044780 +

حقوق النشر © 2025 مركز الإمارات للدراسات والبحوث الاستراتيجية جميع الحقوق محفوظة