Nondestructive Assay of Nuclear Materials for Safeguards and Security : Ensuring Safe Practices / William H. Geist.
نوع المادة : ملف الحاسوباللغة: الإنجليزية الناشر:Cham : Springer International Publishing AG, 2024تاريخ حقوق النشر: 2024الطبعات:2nd edوصف:1 online resource (736 pages)نوع المحتوى:- text
- computer
- online resource
- 9783031582776
نوع المادة | المكتبة الحالية | رقم الطلب | رابط URL | حالة | تاريخ الإستحقاق | الباركود | |
---|---|---|---|---|---|---|---|
مصدر رقمي | UAE Federation Library | مكتبة اتحاد الإمارات Online Copy | نسخة إلكترونية | رابط إلى المورد | لا يعار |
Intro -- Preface -- Acknowledgments -- Disclaimer -- Contents -- Original Authors -- Contributing Authors -- Los Alamos National Laboratory -- Oak Ridge National Laboratory -- Sandia National Laboratories -- JRC-Karlsruhe -- Stockholm University -- Savannah River National Laboratory -- International Atomic Energy Agency -- 1: The Role of Nondestructive Assay in Safeguards, Security, and Safety -- 1.1 Introduction -- 1.2 IAEA Safeguards -- 1.2.1 Use of NDA for Safeguards at the Facility Level -- 1.2.2 Use of NDA for Safeguards at the State Level -- 1.2.3 Use of NDA for Safeguards by IAEA and Regional Authorities -- 1.2.4 Arms Control Treaties -- 1.3 Nuclear Security -- 1.3.1 Introduction -- 1.3.2 Nuclear Material Accounting and Control -- 1.3.3 Detection and Response to Nuclear and Other Radioactive Material Out of Regulatory Control -- 1.4 Safety and Compliance -- 1.4.1 Introduction -- 1.4.2 Criticality Safety -- 1.4.3 Waste Measurement -- References -- 2: The Origin of Gamma Rays -- 2.1 Gamma Rays and the Electromagnetic Spectrum -- 2.2 Characteristics of Nuclear Decay -- 2.2.1 Nuclear Decay Processes: General -- 2.2.2 Alpha Decay -- 2.2.3 Beta Decay -- 2.3 X-Ray Production -- 2.3.1 The Bohr Model of the Atom -- 2.3.2 X-Ray Production Mechanisms -- 2.3.3 Characteristic X-Ray Spectra -- 2.3.4 Bremsstrahlung (Braking Radiation) -- 2.4 Major Gamma Rays from Nuclear Material -- 2.4.1 Typical Spectra -- 2.4.2 Major Gamma-Ray Signatures for Nuclear Material Assay Fission-Product Gamma Rays -- 2.4.3 Fission-Product Gamma Rays -- 2.4.4 Background Radiation -- 2.5 Additional Gamma-Ray Production Reactions -- References -- 3: Gamma-Ray Interactions with Matter -- 3.1 Introduction -- 3.2 Exponential Attenuation -- 3.2.1 The Fundamental Law of Gamma-Ray Attenuation -- 3.2.2 Mass Attenuation Coefficient -- 3.3 Interaction Processes.
3.3.1 Photoelectric Effect -- 3.3.2 Compton Scattering -- 3.3.3 Pair Production -- 3.3.4 Total Mass Attenuation Coefficient -- 3.4 Filters -- 3.5 Shielding -- References -- 4: Gamma-Ray Detectors -- 4.1 Introduction -- 4.2 Types of Detectors -- 4.2.1 Gas-Filled Detectors -- 4.2.2 Scintillation Detectors -- 4.2.3 Solid-State Detectors -- 4.2.3.1 Wide-Energy Detectors -- 4.2.3.2 Radiation Damage -- 4.2.4 Microcalorimeter Detectors -- 4.2.5 Comparison of Detector Types -- 4.3 Characteristics of Detected Spectra -- 4.3.1 Generic Detector Response -- 4.3.2 Spectral Features -- 4.3.3 Detector Resolution -- 4.3.4 Detector Efficiency -- References -- 5: Instrumentation for Gamma-Ray Spectroscopy -- 5.1 Introduction -- 5.2 Selection of Detector -- 5.3 High-Voltage Bias Supply -- 5.4 Preamplifier -- 5.5 Analog Amplifier -- 5.5.1 Pole-Zero Compensation Circuit -- 5.5.2 Baseline Restoration Circuit -- 5.5.3 Pileup Rejection Circuit -- 5.5.4 Advanced Concepts in Amplifier Design -- 5.6 Other Components -- 5.7 Multichannel Analyzer -- 5.7.1 Analog-to-Digital Converter -- 5.7.2 Spectrum Stabilizers -- 5.7.3 Multichannel Analyzer Memory, Display, and Data Analysis -- 5.8 Digital Pulse Processing System -- 5.8.1 Flash ADC -- 5.8.2 Pulse Processor -- 5.8.2.1 Filter -- 5.8.2.2 Pole-Zero Correction -- 5.9 All-in-One Multichannel Analyzer -- 5.10 Auxiliary Electronic Equipment -- 5.11 Concluding Remarks -- References -- 6: Attenuation Correction Procedures -- 6.1 Introduction -- 6.2 Procedures -- 6.2.1 Preliminary Remarks -- 6.2.2 General Description of the Attenuation Correction Factor -- 6.2.3 Necessary Assumptions for Determining an Accurate Self-Attenuation Correction Factor -- 6.2.4 Methods for Determining the Correction Factor for Attenuation -- 6.2.4.1 Calculating Correction Factor from Tabulated Values of.
6.2.4.2 Determining Correction Factor from Transmission Measurements -- 6.2.4.3 Determining Correction Factor Using Representative Standards -- 6.2.4.4 Determining Correction Factor Based on Monte Carlo Simulations -- 6.3 Differential Attenuation Methods -- 6.4 Formal Definition of the Correction Factor for Attenuation -- 6.4.1 The General Definition -- 6.4.2 Useful Specified Shapes -- 6.5 Important Parameters of the Self-Attenuation Correction Factor -- 6.6 Analytic Far-Field Forms for the Self-Attenuation Correction Factor -- 6.6.1 Slab-Shaped Samples -- 6.6.2 Cylindrical Samples -- 6.6.3 Spherical Samples -- 6.7 Numeric Computation in the Near Field -- 6.7.1 A Useful One-Dimensional Model -- 6.7.2 A Useful Two-Dimensional Model -- 6.7.3 A Three-Dimensional Model -- 6.7.4 Approximate Forms and Interpolation -- 6.7.5 Precision of Self-Attenuation Correction Factor and Total Corrected Rate -- References -- 7: General Topics in Passive Gamma-Ray Assay -- 7.1 Introduction -- 7.2 Energy Calibration and Determination of Peak Position -- 7.2.1 Introduction -- 7.2.2 Linear Energy Calibration -- 7.2.3 Determination of Peak Position (Centroid) -- 7.3 Detector Resolution Measurements -- 7.4 Determination of Full-Energy-Peak Area -- 7.4.1 Introduction -- 7.4.2 Selection of Regions of Interest -- 7.4.3 Subtraction of Straight-Line Compton Continuum -- 7.4.4 Subtraction of Smoothed-Step Compton Continuum -- 7.4.5 Subtraction of Compton Continuum Using a Single-Background Region of Interest -- 7.4.6 Using Region-of-Interest Sums to Measure Peak Areas -- 7.4.7 Using Simple Gaussian Fits to Measure Peak Areas -- 7.4.8 Using Known Shape Parameters to Measure Peak Areas in Multiplets -- 7.4.9 Peak Fitting -- 7.4.9.1 Fitting Idiosyncrasies of Microcalorimeter Data -- 7.5 Rate-Related Losses and Corrections -- 7.5.1 Introduction.
7.5.2 Counting Loss as a Function of Input Rate -- 7.5.3 The Poisson Nature of Counting Loss -- 7.5.4 Throughput as a Function of Dead Time -- 7.5.5 General Comments on Data Throughput -- 7.5.6 Correction Methods: General -- 7.5.7 Pileup Correction Methods: Electronic -- 7.5.8 Pulser-Based Corrections for Dead Time and Pileup -- 7.5.9 Reference-Source Method for Dead-Time Pileup Corrections -- 7.6 Coincidence Summing in Gamma-Ray Spectra -- 7.6.1 Random Coincidence Summing -- 7.6.2 True Coincidence Summing -- 7.7 Geometric Effects -- 7.7.1 The Inverse Square Law -- 7.7.2 Solid Angle -- 7.7.3 Extended-Source Geometries -- 7.8 Detector Efficiency Measurements -- 7.8.1 Absolute Full-Energy-Peak Efficiency -- 7.8.2 Intrinsic Detector Efficiency -- 7.9 Relative Efficiency -- 7.9.1 Efficiency as a Function of Energy and Position -- 7.9.2 Toy Model for Relative Efficiency -- 7.9.3 Example Relative Efficiency Measurements -- 7.9.4 Relative Efficiency Curve Functions -- 7.9.5 Efficiency Relative to the Accepted Standard Size NaI(TI) Detector -- 7.10 Measurement of Nuclide Ratios -- 7.11 Estimation of Activity and Mass Using Gamma Rays -- 7.11.1 Absolute Efficiency Correction Using Relative Efficiency Analysis -- References -- 8: The Measurement of Uranium Enrichment -- 8.1 Introduction -- 8.2 Radiations from Uranium Items -- 8.3 Infinite-Thickness Gamma Measurement Technique -- 8.3.1 Uranium and Matrix Material -- 8.3.2 Instrumentation and Infinite-Item Technique: 2-ROI Method -- 8.3.3 Instrumentation and Infinite-Item Technique: Peak-Fitting Method -- 8.4 Peak-Ratio Technique -- 8.4.1 Determination of 236U Concentration -- 8.4.2 Decay Characteristics of Uranium Isotopes -- 8.4.3 U-238 Secular Equilibrium -- 8.4.4 Spectra Interferences -- 8.4.5 Summing Effects -- 8.4.6 Analytical Regions -- 8.4.6.1 The 60-240 keV Region Analysis.
8.4.6.2 The 120-1010 keV Region Analysis -- 8.4.7 Summary of Peak-Ratio Technique -- 8.5 Visual Estimation of Enrichment -- 8.6 Gas-Phase Uranium Enrichment Measurement Techniques -- 8.7 Container Wall Attenuation Corrections -- 8.7.1 Direct Measurement of Wall Thickness -- 8.7.2 Measurement of UF6 Cylinders -- References -- 9: Plutonium Isotopic Composition by Gamma-Ray Spectroscopy -- 9.1 Introduction -- 9.2 Background -- 9.2.1 Decay Characteristics of Plutonium Isotopes -- 9.2.2 Decay Characteristics of 241Pu -- 9.2.3 Determination of 242Pu Concentration -- 9.2.4 Spectral Interferences -- 9.2.5 Applications of Plutonium Isotopic Measurements -- 9.3 Spectral Regions Useful for Isotopic Measurements -- 9.3.1 The 30-60 keV Region -- 9.3.2 The 60-120 keV Region -- 9.3.3 The 120-500 keV Region -- 9.3.4 The 500-800 keV Region -- 9.3.5 Actual Analytical Regions -- 9.3.5.1 The 30-210 keV Analytical Region -- 9.3.5.2 The 60-210 keV Analytical Region -- 9.3.5.3 The 120-420 keV Analytical Region -- 9.3.5.4 The 200-800 keV Analytical Region -- 9.3.5.5 The 96-210 keV Analytical Region with Microcalorimeters -- 9.4 Measurement Principles -- 9.4.1 Measurement of Isotopic Ratios -- 9.4.2 The 242Pu Isotopic Correlation -- 9.4.3 Summary of Measurement Precision (HPGe Detectors) -- 9.4.4 Summary of Measurement Precision (Microcalorimeters) -- References -- 10: Gamma-Ray NDA Applications & -- Techniques -- 10.1 Introduction -- 10.2 Attribute Measurements -- 10.2.1 Introduction -- 10.2.2 Measurement of Nuclear Material Attributes -- 10.2.3 International Atomic Energy Agency Verification of the Presence of Radionuclides -- 10.3 General Nuclide Identification -- 10.3.1 Introduction -- 10.3.2 Manual Methods -- 10.3.3 Template Matching -- 10.3.4 Recent Software Applications -- 10.3.4.1 Spectral Analysis Software.
10.3.4.2 Detector Response and Inject Modeling Software.
This open access book describes the nondestructive assay techniques that are used for the measurement of nuclear material (primarily uranium and plutonium) for nuclear material accountancy purposes. It is a substantial revision to the so-called PANDA manual that has been a standard reference since its publication in 1991. The book covers the origin and interactions of gamma rays and neutrons as they affect nuclear measurements and also describes the theory and practice of calorimetry. The book gives a description of many instruments based on these techniques that are applied in the field.Although the basic physics has not changed since PANDA was first published, the last thirty years have seen many advances in analysis methods, instrumentation, and applications. The basic descriptions of the origin and interactions of radiation have been updated and include newer references. There have been extensive revisions of the description of gamma detection methods, attenuation correction procedures, and analysis methods, including for the measurement of uranium enrichment and the determination of plutonium isotopic composition. Extensive revisions and additions have also been made to the description of neutron detectors and to the explanation of neutron coincidence techniques. The chapter on neutron multiplicity techniques is a new addition to this edition. The applications of gamma and neutron techniques have been completely overhauled to remove obsolete systems and to include many current applications. The values of, and references to, nuclear data have been updated. This updated edition is an essential reference for academic researchers and practitioners in the field.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2025. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.