صورة الغلاف المحلية
صورة الغلاف المحلية
عرض عادي

Unlocking Artificial Intelligence : From Theory to Applications / Christopher Mutschler.

بواسطة:المساهم (المساهمين):نوع المادة : ملف الحاسوبملف الحاسوباللغة: الإنجليزية الناشر:Cham : Springer International Publishing AG, 2024تاريخ حقوق النشر: 2024الطبعات:1st edوصف:1 online resource (382 pages)نوع المحتوى:
  • text
نوع الوسائط:
  • computer
نوع الناقل:
  • online resource
تدمك:
  • 9783031648328
الموضوع:النوع/الشكل:تنسيقات مادية إضافية:Print version:: Unlocking Artificial Intelligenceموارد على الانترنت:
المحتويات:
Intro -- Preface -- Acknowledgements -- Contents -- Part I Theory -- Chapter 1 Automated Machine Learning -- 1.1 Introduction -- 1.2 Components of AutoML Systems -- 1.2.1 Search Space -- 1.2.2 Optimization -- 1.2.3 Ensembling -- 1.2.4 Feature Selection and Engineering -- 1.2.5 Meta-Learning -- 1.2.6 A Brief Note on AutoML in the Wild -- 1.3 Selected Topics in AutoML -- 1.3.1 AutoML for Time Series Data -- 1.3.2 Unsupervised AutoML -- 1.3.3 AutoML Beyond a Single Objective -- 1.3.4 Human-In-The-Loop AutoML -- 1.4 Neural Architecture Search -- 1.4.1 A Brief Overview of the Current State of NAS -- 1.4.2 Hardware-aware NAS -- 1.5 Conclusion and Outlook -- References -- Chapter 2 Sequence-based Learning -- 2.1 Introduction -- 2.2 Time Series Processing -- 2.2.1 Time Series Data Streams -- 2.2.2 Pre-Processing -- 2.2.3 Predictive Modelling -- 2.2.4 Post-Processing -- 2.3 Methods -- 2.3.1 Temporal Convolutional Networks -- 2.3.2 Recurrent Neural Networks -- 2.3.3 Transformer -- 2.4 Perspectives -- 2.4.1 Time Series Similarity -- 2.4.1.1 Deep Metric Learning -- 2.4.2 Transfer Learning &amp -- Domain Adaptation -- 2.4.3 Model Interpretability -- 2.4.3.1 Interpretability for Time Series -- 2.4.3.2 Trusting Interpretations -- 2.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 3 Learning from Experience -- 3.1 Introduction -- 3.2 Concepts of Reinforcement Learning -- 3.2.1 Markov Decision Processes (MDPs) -- 3.2.2 Dynamic Programming -- 3.2.3 Model-free Reinforcement Learning -- 3.2.4 General Remarks -- 3.3 Learning purely through Interaction -- 3.3.1 Exploration-Exploitation -- 3.3.1.1 Exploration Strategies -- 3.3.1.2 Exploration in Deep RL -- 3.4 Learning with Data or Knowledge -- 3.4.1 Model-based RL with continuous Actions -- 3.4.2 MBRL with Discrete Actions: Monte Carlo Tree Search -- 3.4.3 Offline Reinforcement Learning.
3.4.4 Hierarchical RL -- 3.5 Challenges for Agent Deployment -- 3.5.1 Safety through Policy Constraints -- 3.5.2 Generalizability of Policies -- 3.5.3 Lack of a Reward Function -- 3.6 Conclusion and Outlook -- References -- Chapter 4 Learning with Limited Labelled Data -- 4.1 Introduction -- 4.2 Semi-Supervised Learning -- 4.2.1 Classical Semi-Supervised Learning -- 4.2.2 Deep Semi-Supervised Learning -- 4.2.2.1 Self-training -- 4.2.2.2 Unsupervised Regularization -- 4.2.3 Self-Training and Consistency Regularization -- 4.3 Active Learning -- 4.3.1 Deep Active Learning (DAL) -- 4.3.2 Uncertainty Sampling -- 4.3.3 Diversity Sampling -- 4.3.4 Balanced Criteria -- 4.4 Active Semi-Supervised Learning -- 4.4.1 How can SSL and ALWork Together? -- 4.4.2 Are SSL and AL Always Mutually Beneficial? -- 4.5 Conclusion and Outlook -- References -- Chapter 5 The Role of Uncertainty Quantification for Trustworthy AI -- 5.1 Introduction -- 5.2 Towards Trustworthy AI -- 5.2.1 The EU AI Act -- 5.2.2 From Uncertainty to Trustworthy AI -- 5.3 Uncertainty Quantification -- 5.3.1 Sources of Uncertainty -- 5.3.1.1 Aleatoric Uncertainty -- 5.3.1.2 Epistemic Uncertainty -- 5.3.2 Methods for Quantification of Uncertainty and Calibration -- 5.3.2.1 Data-based Methods -- 5.3.2.2 Architecture-Modifying Methods -- 5.3.2.3 Post-Hoc Methods -- 5.3.3 Evaluation Metrics for Uncertainty Estimation -- 5.3.3.1 Negative Log-Likelihood -- x -- 5.3.3.2 Expected Calibration Error -- 5.3.3.3 Rejection-based Measures -- 5.4 Conclusion and Outlook -- References -- Chapter 6 Process-aware Learning -- 6.1 Introduction -- 6.2 Overview of Process Mining -- 6.2.1 Process Mining Basic Concept -- 6.2.2 Process Mining Types -- 6.2.2.1 Process Discovery -- 6.2.2.2 Conformance Checking -- 6.2.2.3 Model Enhancement -- 6.2.3 Event Log -- 6.2.4 Four Quality Criteria -- 6.2.5 Types of Processes.
6.2.5.1 Lasagna Processes -- 6.2.5.2 Spaghetti Processes -- 6.3 Process-Awareness from Theory to Practice -- 6.3.1 Predictive Analysis in Process Mining -- 6.3.2 Predictive Process Mining with Bayesian Statistics -- 6.3.2.1 Preliminaries for Bayesian Modeling -- 6.3.2.2 Quality Criteria for Bayesian Modeling -- 6.3.2.3 Context-Aware Structure Learning for Probabilistic Process Prediction -- 6.3.3 Process AI -- 6.4 Conclusion and Outlook -- References -- Chapter 7 Combinatorial Optimization -- 7.1 Introduction -- 7.2 Solving Methods -- 7.2.1 Heuristics -- 7.2.2 Exact Methods -- 7.3 Modeling Techniques -- 7.3.1 Graph Theory -- 7.3.1.1 Clique Problems -- 7.3.1.2 Flow Models -- 7.3.2 Mixed Integer Programs and Connections to Machine Learning -- 7.3.2.1 Modeling Logic -- 7.3.2.2 Binary Decision Trees -- 7.3.3 Pooling -- 7.4 Conclusion and Outlook -- References -- Chapter 8 Acquisition of Semantics for Machine-Learning and Deep-Learning based Applications -- 8.1 Introduction -- 8.2 Approaches to Acquire Semantics -- 8.2.1 Manual Annotation and Labeling -- 8.2.2 Data Augmentation Techniques -- 8.2.3 Simulation and Generation -- 8.2.3.1 Physical Modeling -- 8.2.3.2 Generative Adversarial Networks -- 8.2.4 High-End Reference Sensors -- 8.2.5 Active Learning -- 8.2.6 Knowledge Modeling Using Semantic Networks -- 8.2.7 Discussion -- 8.3 Conclusion and Outlook -- References -- Part II Applications -- Chapter 9 Assured Resilience in Autonomous Systems - Machine Learning Methods for Reliable Perception -- 9.1 Introduction -- 9.1.1 The Perception Challenge -- 9.2 Approaches to reliable perception -- 9.2.1 Choice of Dataset -- 9.2.2 Unexpected Behavior of ML Methods -- 9.2.3 Reliable Object Detection for Autonomous Driving -- 9.2.4 Uncertainty Quantification for Image Classification -- 9.2.5 Ensemble Distribution Distillation for 2D Object Detection.
9.2.6 Robust Object Detection in Simulated Driving Environments -- 9.2.6.1 Scenarios Setup -- 9.2.6.2 Methods and Metrics -- 9.2.6.3 Results -- 9.2.7 Out-of-Distribution Detection -- 9.3 Conclusion and Outlook -- References -- Chapter 10 Data-driven Wireless Positioning -- 10.1 Introduction -- 10.2 AI-Assisted Localization -- 10.3 Direct Positioning -- 10.3.1 Model -- 10.3.2 Experimental Setup -- 10.3.2.1 Measurement Campaign -- 10.3.2.2 Environments -- 10.3.3 Evaluation -- 10.3.4 Hybrid Localization -- 10.3.5 Zone Identification -- 10.3.6 Experimental Setup -- 10.3.7 Environments -- 10.3.8 Evaluation -- 10.4 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 11 Comprehensible AI for Multimodal State Detection -- 11.1 Introduction -- 11.1.1 Cognitive Load Estimation -- 11.1.2 Challenges in Affective Computing -- 11.2 Data Collection -- 11.2.1 Annotation -- 11.2.2 Data Preprocessing -- 11.3 Modeling -- 11.3.1 In-Domain Evaluation -- 11.3.2 Cross-Domain Evaluation -- 11.3.3 Interpretability -- 11.3.4 Improving ECG Representation Learning -- 11.3.5 Deployment and Application -- 11.4 Conclusion and Outlook -- References -- Chapter 12 Robust and Adaptive AI for Digital Pathology -- 12.1 Introduction -- 12.2 Applications: Tumor Detection and Tumor-Stroma Assessment -- 12.2.1 Generation of Labeled Data Sets -- 12.2.2 Data Sets for Tumor Detection -- 12.2.2.1 Primary Data Set -- 12.2.2.2 Multi-Scanner Dataset -- 12.2.2.3 Multi-Center Dataset -- 12.2.2.4 Out-of-Distribution Data Set -- 12.2.2.5 Urothelial Data Sets -- 12.2.3 Data Set for Tumor-Stroma Assessment -- 12.3 Prototypical Few-Shot Classification -- 12.3.1 Robustness through Data Augmentation -- 12.3.1.1 Evaluation on the Multi-Scanner Data Set -- 12.3.1.2 Evaluation on the Multi-Center Data Set -- 12.3.2 Out-of-Distribution Detection.
12.3.3 Adaptation to Urothelial Tumor Detection -- 12.3.4 Interactive AI Authoring with MIKAIA -- 12.4 Prototypical Few-Shot Segmentation -- 12.4.1 Tumor-Stroma Assessment -- 12.5 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 13 Safe and Reliable AI for Autonomous Systems -- 13.1 Introduction -- 13.1.1 Reinforcement Learning -- 13.1.2 Reinforcement Learning for Autonomous Driving -- 13.2 Generating Environments with Driver Dojo -- 13.2.1 Method -- 13.3 Training safe Policies with SafeDQN -- 13.3.1 Method -- 13.3.2 Evaluation -- 13.4 Extracting tree policies with SafeVIPER -- 13.4.1 Training the Policy -- 13.4.2 Verification of Decision Trees -- 13.4.3 Evaluation -- 13.5 Conclusion and Outlook -- References -- Chapter 14 AI for Stability Optimization in Low Voltage Direct Current Microgrids -- 14.1 Introduction -- 14.2 Low Voltage DC Microgrids -- 14.2.1 Control of Low Voltage DC Microgrids -- 14.2.2 Stability of Low Voltage DC Microgrids -- 14.3 AI-based Stability Optimization for Low Voltage DC Microgrids -- 14.3.1 Overview -- 14.3.2 Digital Network Twin and Generation of Labels to Describe the Stability State -- 14.3.3 LVDC Microgrid Surrogate Model Applying Random Forests -- 14.3.4 Stability Optimization Applying Decision Trees -- 14.4 Implementation and Assessment -- 14.4.1 Measurement of Grid Stability -- 14.4.2 Experimental Validation -- 14.5 Conclusion and Outlook -- References -- Chapter 15 Self-Optimization in Adaptive Logistics Networks -- 15.1 Introduction -- 15.2 A Brief Overview of Relevant Literature on Predicting the All-Time Buy Quantity -- 15.3 Predicting the All-Time Buy -- 15.4 A Probabilistic Hierarchical Growth Curve model -- 15.5 Determining the Optimal Order Policy -- 15.5.1 Modeling Non-Linear Costs -- 15.5.2 Robust Optimization -- 15.6 Pooling -- 15.7 Conclusion and Outlook -- References.
Chapter 16 Optimization of Underground Train Systems.
قوائم هذه المادة تظهر في: Electronic Books | الكتب الإلكترونية
المقتنيات
نوع المادة المكتبة الحالية رقم الطلب رابط URL حالة تاريخ الإستحقاق الباركود
مصدر رقمي مصدر رقمي UAE Federation Library | مكتبة اتحاد الإمارات Online Copy | نسخة إلكترونية رابط إلى المورد لا يعار

Intro -- Preface -- Acknowledgements -- Contents -- Part I Theory -- Chapter 1 Automated Machine Learning -- 1.1 Introduction -- 1.2 Components of AutoML Systems -- 1.2.1 Search Space -- 1.2.2 Optimization -- 1.2.3 Ensembling -- 1.2.4 Feature Selection and Engineering -- 1.2.5 Meta-Learning -- 1.2.6 A Brief Note on AutoML in the Wild -- 1.3 Selected Topics in AutoML -- 1.3.1 AutoML for Time Series Data -- 1.3.2 Unsupervised AutoML -- 1.3.3 AutoML Beyond a Single Objective -- 1.3.4 Human-In-The-Loop AutoML -- 1.4 Neural Architecture Search -- 1.4.1 A Brief Overview of the Current State of NAS -- 1.4.2 Hardware-aware NAS -- 1.5 Conclusion and Outlook -- References -- Chapter 2 Sequence-based Learning -- 2.1 Introduction -- 2.2 Time Series Processing -- 2.2.1 Time Series Data Streams -- 2.2.2 Pre-Processing -- 2.2.3 Predictive Modelling -- 2.2.4 Post-Processing -- 2.3 Methods -- 2.3.1 Temporal Convolutional Networks -- 2.3.2 Recurrent Neural Networks -- 2.3.3 Transformer -- 2.4 Perspectives -- 2.4.1 Time Series Similarity -- 2.4.1.1 Deep Metric Learning -- 2.4.2 Transfer Learning &amp -- Domain Adaptation -- 2.4.3 Model Interpretability -- 2.4.3.1 Interpretability for Time Series -- 2.4.3.2 Trusting Interpretations -- 2.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 3 Learning from Experience -- 3.1 Introduction -- 3.2 Concepts of Reinforcement Learning -- 3.2.1 Markov Decision Processes (MDPs) -- 3.2.2 Dynamic Programming -- 3.2.3 Model-free Reinforcement Learning -- 3.2.4 General Remarks -- 3.3 Learning purely through Interaction -- 3.3.1 Exploration-Exploitation -- 3.3.1.1 Exploration Strategies -- 3.3.1.2 Exploration in Deep RL -- 3.4 Learning with Data or Knowledge -- 3.4.1 Model-based RL with continuous Actions -- 3.4.2 MBRL with Discrete Actions: Monte Carlo Tree Search -- 3.4.3 Offline Reinforcement Learning.

3.4.4 Hierarchical RL -- 3.5 Challenges for Agent Deployment -- 3.5.1 Safety through Policy Constraints -- 3.5.2 Generalizability of Policies -- 3.5.3 Lack of a Reward Function -- 3.6 Conclusion and Outlook -- References -- Chapter 4 Learning with Limited Labelled Data -- 4.1 Introduction -- 4.2 Semi-Supervised Learning -- 4.2.1 Classical Semi-Supervised Learning -- 4.2.2 Deep Semi-Supervised Learning -- 4.2.2.1 Self-training -- 4.2.2.2 Unsupervised Regularization -- 4.2.3 Self-Training and Consistency Regularization -- 4.3 Active Learning -- 4.3.1 Deep Active Learning (DAL) -- 4.3.2 Uncertainty Sampling -- 4.3.3 Diversity Sampling -- 4.3.4 Balanced Criteria -- 4.4 Active Semi-Supervised Learning -- 4.4.1 How can SSL and ALWork Together? -- 4.4.2 Are SSL and AL Always Mutually Beneficial? -- 4.5 Conclusion and Outlook -- References -- Chapter 5 The Role of Uncertainty Quantification for Trustworthy AI -- 5.1 Introduction -- 5.2 Towards Trustworthy AI -- 5.2.1 The EU AI Act -- 5.2.2 From Uncertainty to Trustworthy AI -- 5.3 Uncertainty Quantification -- 5.3.1 Sources of Uncertainty -- 5.3.1.1 Aleatoric Uncertainty -- 5.3.1.2 Epistemic Uncertainty -- 5.3.2 Methods for Quantification of Uncertainty and Calibration -- 5.3.2.1 Data-based Methods -- 5.3.2.2 Architecture-Modifying Methods -- 5.3.2.3 Post-Hoc Methods -- 5.3.3 Evaluation Metrics for Uncertainty Estimation -- 5.3.3.1 Negative Log-Likelihood -- x -- 5.3.3.2 Expected Calibration Error -- 5.3.3.3 Rejection-based Measures -- 5.4 Conclusion and Outlook -- References -- Chapter 6 Process-aware Learning -- 6.1 Introduction -- 6.2 Overview of Process Mining -- 6.2.1 Process Mining Basic Concept -- 6.2.2 Process Mining Types -- 6.2.2.1 Process Discovery -- 6.2.2.2 Conformance Checking -- 6.2.2.3 Model Enhancement -- 6.2.3 Event Log -- 6.2.4 Four Quality Criteria -- 6.2.5 Types of Processes.

6.2.5.1 Lasagna Processes -- 6.2.5.2 Spaghetti Processes -- 6.3 Process-Awareness from Theory to Practice -- 6.3.1 Predictive Analysis in Process Mining -- 6.3.2 Predictive Process Mining with Bayesian Statistics -- 6.3.2.1 Preliminaries for Bayesian Modeling -- 6.3.2.2 Quality Criteria for Bayesian Modeling -- 6.3.2.3 Context-Aware Structure Learning for Probabilistic Process Prediction -- 6.3.3 Process AI -- 6.4 Conclusion and Outlook -- References -- Chapter 7 Combinatorial Optimization -- 7.1 Introduction -- 7.2 Solving Methods -- 7.2.1 Heuristics -- 7.2.2 Exact Methods -- 7.3 Modeling Techniques -- 7.3.1 Graph Theory -- 7.3.1.1 Clique Problems -- 7.3.1.2 Flow Models -- 7.3.2 Mixed Integer Programs and Connections to Machine Learning -- 7.3.2.1 Modeling Logic -- 7.3.2.2 Binary Decision Trees -- 7.3.3 Pooling -- 7.4 Conclusion and Outlook -- References -- Chapter 8 Acquisition of Semantics for Machine-Learning and Deep-Learning based Applications -- 8.1 Introduction -- 8.2 Approaches to Acquire Semantics -- 8.2.1 Manual Annotation and Labeling -- 8.2.2 Data Augmentation Techniques -- 8.2.3 Simulation and Generation -- 8.2.3.1 Physical Modeling -- 8.2.3.2 Generative Adversarial Networks -- 8.2.4 High-End Reference Sensors -- 8.2.5 Active Learning -- 8.2.6 Knowledge Modeling Using Semantic Networks -- 8.2.7 Discussion -- 8.3 Conclusion and Outlook -- References -- Part II Applications -- Chapter 9 Assured Resilience in Autonomous Systems - Machine Learning Methods for Reliable Perception -- 9.1 Introduction -- 9.1.1 The Perception Challenge -- 9.2 Approaches to reliable perception -- 9.2.1 Choice of Dataset -- 9.2.2 Unexpected Behavior of ML Methods -- 9.2.3 Reliable Object Detection for Autonomous Driving -- 9.2.4 Uncertainty Quantification for Image Classification -- 9.2.5 Ensemble Distribution Distillation for 2D Object Detection.

9.2.6 Robust Object Detection in Simulated Driving Environments -- 9.2.6.1 Scenarios Setup -- 9.2.6.2 Methods and Metrics -- 9.2.6.3 Results -- 9.2.7 Out-of-Distribution Detection -- 9.3 Conclusion and Outlook -- References -- Chapter 10 Data-driven Wireless Positioning -- 10.1 Introduction -- 10.2 AI-Assisted Localization -- 10.3 Direct Positioning -- 10.3.1 Model -- 10.3.2 Experimental Setup -- 10.3.2.1 Measurement Campaign -- 10.3.2.2 Environments -- 10.3.3 Evaluation -- 10.3.4 Hybrid Localization -- 10.3.5 Zone Identification -- 10.3.6 Experimental Setup -- 10.3.7 Environments -- 10.3.8 Evaluation -- 10.4 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 11 Comprehensible AI for Multimodal State Detection -- 11.1 Introduction -- 11.1.1 Cognitive Load Estimation -- 11.1.2 Challenges in Affective Computing -- 11.2 Data Collection -- 11.2.1 Annotation -- 11.2.2 Data Preprocessing -- 11.3 Modeling -- 11.3.1 In-Domain Evaluation -- 11.3.2 Cross-Domain Evaluation -- 11.3.3 Interpretability -- 11.3.4 Improving ECG Representation Learning -- 11.3.5 Deployment and Application -- 11.4 Conclusion and Outlook -- References -- Chapter 12 Robust and Adaptive AI for Digital Pathology -- 12.1 Introduction -- 12.2 Applications: Tumor Detection and Tumor-Stroma Assessment -- 12.2.1 Generation of Labeled Data Sets -- 12.2.2 Data Sets for Tumor Detection -- 12.2.2.1 Primary Data Set -- 12.2.2.2 Multi-Scanner Dataset -- 12.2.2.3 Multi-Center Dataset -- 12.2.2.4 Out-of-Distribution Data Set -- 12.2.2.5 Urothelial Data Sets -- 12.2.3 Data Set for Tumor-Stroma Assessment -- 12.3 Prototypical Few-Shot Classification -- 12.3.1 Robustness through Data Augmentation -- 12.3.1.1 Evaluation on the Multi-Scanner Data Set -- 12.3.1.2 Evaluation on the Multi-Center Data Set -- 12.3.2 Out-of-Distribution Detection.

12.3.3 Adaptation to Urothelial Tumor Detection -- 12.3.4 Interactive AI Authoring with MIKAIA -- 12.4 Prototypical Few-Shot Segmentation -- 12.4.1 Tumor-Stroma Assessment -- 12.5 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 13 Safe and Reliable AI for Autonomous Systems -- 13.1 Introduction -- 13.1.1 Reinforcement Learning -- 13.1.2 Reinforcement Learning for Autonomous Driving -- 13.2 Generating Environments with Driver Dojo -- 13.2.1 Method -- 13.3 Training safe Policies with SafeDQN -- 13.3.1 Method -- 13.3.2 Evaluation -- 13.4 Extracting tree policies with SafeVIPER -- 13.4.1 Training the Policy -- 13.4.2 Verification of Decision Trees -- 13.4.3 Evaluation -- 13.5 Conclusion and Outlook -- References -- Chapter 14 AI for Stability Optimization in Low Voltage Direct Current Microgrids -- 14.1 Introduction -- 14.2 Low Voltage DC Microgrids -- 14.2.1 Control of Low Voltage DC Microgrids -- 14.2.2 Stability of Low Voltage DC Microgrids -- 14.3 AI-based Stability Optimization for Low Voltage DC Microgrids -- 14.3.1 Overview -- 14.3.2 Digital Network Twin and Generation of Labels to Describe the Stability State -- 14.3.3 LVDC Microgrid Surrogate Model Applying Random Forests -- 14.3.4 Stability Optimization Applying Decision Trees -- 14.4 Implementation and Assessment -- 14.4.1 Measurement of Grid Stability -- 14.4.2 Experimental Validation -- 14.5 Conclusion and Outlook -- References -- Chapter 15 Self-Optimization in Adaptive Logistics Networks -- 15.1 Introduction -- 15.2 A Brief Overview of Relevant Literature on Predicting the All-Time Buy Quantity -- 15.3 Predicting the All-Time Buy -- 15.4 A Probabilistic Hierarchical Growth Curve model -- 15.5 Determining the Optimal Order Policy -- 15.5.1 Modeling Non-Linear Costs -- 15.5.2 Robust Optimization -- 15.6 Pooling -- 15.7 Conclusion and Outlook -- References.

Chapter 16 Optimization of Underground Train Systems.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

اضغط على الصورة لمشاهدتها في عارض الصور

صورة الغلاف المحلية
شارك

أبوظبي، الإمارات العربية المتحدة

reference@ecssr.ae

97124044780 +

حقوق النشر © 2024 مركز الإمارات للدراسات والبحوث الاستراتيجية جميع الحقوق محفوظة