عرض عادي

The essence of dielectric waveguides / C. Yeh, F.I. Shimabukuro.

بواسطة:المساهم (المساهمين):نوع المادة : نصنصالناشر:New York : Springer, [2008]تاريخ حقوق النشر: ©2008وصف:xvi, 522 pages : illustrationsنوع المحتوى:
  • text
نوع الوسائط:
  • unmediated
نوع الناقل:
  • volume
تدمك:
  • 9780387309293
  • 0387309292
  • 0387497994
  • 9780387497990
الموضوع:تصنيف مكتبة الكونجرس:
  • TK7871.65 .Y44 2008
المحتويات:
1.1 Brief Historical Background 1 -- 1.2 Scope of this Book 7 -- 2 Fundamental Electromagnetic Field Equations 11 -- 2.1 Maxwell Equations 11 -- 2.2 The Constitutive Relations 13 -- 2.2.1 Simple Medium (Linear and Isotropic) 14 -- 2.2.2 Anisotropic Medium 15 -- 2.2.3 Left-Handed Medium (Metamaterial) 16 -- 2.2.4 Conducting Medium 16 -- 2.2.5 Dielectric Medium with Loss 17 -- 2.2.6 Nonlinear Medium 18 -- 2.3 Boundary Conditions, Radiation Condition, and Edge Condition 20 -- 2.3.1 Boundary Conditions 20 -- 2.3.2 Radiation Condition 28 -- 2.3.3 Edge Condition 28 -- 2.3.4 Uniqueness Theorem 29 -- 2.4 Energy Relations: Poynting's Vector Theorem 29 -- 2.5 Classification of Fields 32 -- 2.5.1 The Debye Potentials 33 -- 2.5.2 Basic Wave Types 34 -- 2.5.3 Separation of Variables 39 -- 2.5.3.1 Rectangular Coordinates (x, y, z) 39 -- 2.5.3.2 Circular Cylinder Coordinates (r, [theta], z) 40 -- 2.5.3.3 Elliptical Cylinder Coordinates ([xi], [eta], z) 41 -- 2.5.3.4 Parabolic Cylinder Coordinates ([xi], [eta], z) 42 -- 2.6 Polarization of Waves 44 -- 2.6.1 Linearly Polarized Waves 44 -- 2.6.2 Circularly Polarized Waves 44 -- 2.6.3 Elliptically Polarized Waves 44 -- 2.7 Phase Velocity and Group Velocity 44 -- 2.8 The Impedance Concept 46 -- 2.9 Validity of the Scalar Wave Approach 47 -- 3 Propagation Characteristics of Guided Waves Along a Dielectric Guide 55 -- 3.1 Typical Surface Waveguide Structures 55 -- 3.2 Formal Approach to the Surface Waveguide Problems 57 -- 3.3 The [omega]-[beta] Diagram: Dispersion Relations 59 -- 3.4 Geometrical Optics Approach 62 -- 3.5 Attenuation Constant 65 -- 3.5.1 Single Mode Case 66 -- 3.5.2 Multimode Case 68 -- 3.6 Signal Dispersion and Distortion 70 -- 3.7 [alpha] and Q 76 -- 3.8 Excitation of Modes on a Dielectric Waveguide 79 -- 3.8.1 Excitation Through Direct Incidence 79 -- 3.8.1.1 Incident Plane Wave 81 -- 3.8.1.2 Incident Gaussian Beam 82 -- 3.8.2 Excitation Through Efficient Transitions 85 -- 3.9 Coupled Mode Theory 87 -- 3.10 Bends and Corners for Dielectric Waveguides 89 -- 3.11 Systems and Noise 92 -- 4 Planar Dielectric Waveguides 99 -- 4.1 Fundamental Equations 99 -- 4.2 Dielectric Slab Waveguide 100 -- 4.2.1 The TM Surface Wave Modes 101 -- 4.2.1.1 Cutoff Conditions for TM Modes 103 -- 4.2.1.2 Distribution of Guided Power 105 -- 4.2.1.3 Attenuation 106 -- 4.2.2 The TE Surface Wave Mode 107 -- 4.2.3 Special Cases and Numerical Examples 109 -- 4.3 Leaky Wave in a Heteroepitaxial Film Slab Waveguide 112 -- 4.3.1 Leaky Modes along an Asymmetric Dielectric Waveguide 114 -- 4.3.2 Approximate Solutions of the Characteristic Equations 115 -- 4.4 Multilayered Dielectric Slab Waveguides 118 -- 4.5 Coupling Between Two Parallel Dielectric Slab Waveguides 122 -- 4.6 The Sommerfeld-Zenneck Surface Impedance Waveguide 131 -- 5 Circular Dielectric Waveguides 137 -- 5.1 Fundamental Equations 138 -- 5.2 Modes on Uniform Solid Core Circular Dielectric Cylinder 139 -- 5.2.1 Dispersion Relations 141 -- 5.2.2 Cutoff Conditions 144 -- 5.2.3 Attenuation 147 -- 5.2.3.1 The Exact Approach 147 -- 5.2.3.2 The Perturbation Approach 148 -- 5.2.4 Field Configurations 150 -- 5.3 The Sommerfeld-Goubau Wire 152 -- 5.4 Modes on Radially Inhomogeneous Core Circular Dielectric Cylinder 155 -- 5.4.1 Formulation of the Problem 155 -- 5.4.2 Selected Examples 160 -- 5.4.3 Hollow Cylindrical Dielectric Waveguide 165 -- 5.5 Experimental Determination of Propagation Characteristics of Circular Dielectric Waveguides 167 -- 5.5.1 Ultrahigh Q Dielectric Rod Resonant Cavity 167 -- 5.5.2 Measured Results 172 -- 6 Elliptical Dielectric Waveguides 179 -- 6.1 Formulation of the Problem 180 -- 6.2 Boundary Conditions 184 -- 6.3 Mode Classifications 188 -- 6.4 The Dispersion Relations 189 -- 6.4.1 Cutoff Frequencies of Modes 197 -- 6.4.2 Transition to Circular Cross-Section 199 -- 6.4.3 Approximate Characteristic Equations 201 -- 6.4.4 Propagation Characteristics 203 -- 6.4.4.1 The Even Dominant [subscript e]HE[subscript 11] Mode 204 -- 6.4.4.2 The Odd Dominant [subscript o]HE[subscript 11] Mode 205 -- 6.4.4.3 Higher Order [subscript e, o]HE[subscript n'm'] Modes 206 -- 6.4.5 Field Configurations of the Dominant Modes 207 -- 6.4.6 Attenuation Calculation 209 -- 6.5 Weakly Guiding Elliptical Dielectric Waveguides 210 -- 6.6 Experimental Results 214 -- 7 Approximate Methods 221 -- 7.1 Marcatili's Approximate Method 221 -- 7.1.1 Approximate Solution for a Rectangular Dielectric Waveguide 221 -- 7.1.1.1 The E[subscript nm superscript y] Modes 223 -- 7.1.1.2 The E[subscript nm superscript y] Modes 229 -- 7.2 The Circular Harmonics Method 231 -- 7.3 Experimental Measurements 238 -- 8 Inhomogeneous Dielectric Waveguides 241 -- 8.1 Debye Potentials for Inhomogeneous Medium 241 -- 8.1.1 Rectangular Coordinates (x, y, z) 242 -- 8.1.2 Spherical Coordinates (r, [theta], [phi]) 243 -- 8.1.3 Circular Cylindrical Coordinates (p, [theta], z) 244 -- 8.2 Applications 245 -- 8.2.1 Structures with Transverse Inhomogeneity 246 -- 8.2.1.1 Wave Propagation along a Dielectric Slab with [epsilon](x) and [pi subscript o] Immersed in Free-space 246 -- 8.2.1.2 Waves in Metallic Rectangular Waveguide Filled with Transversely Inhomogeneous Dielectrics 249 -- 8.2.1.3 Circularly Symmetric Waves along a Cylindrical Radially Inhomogeneous Dielectric Cylinder 252 -- 8.2.2 Structures with Longitudinal Inhomogeneity 255 -- 8.2.2.1 Longitudinal Periodic Medium 256 -- 8.2.2.2 Solutions to the Hill Equation 259 -- 8.2.2.3 Propagation Characteristics of Type (II) (TM) Waves in Periodic Structures 261 -- 9 Optical Fibers 265 -- 9.1 Weakly Guiding Optical Fibers 265 -- 9.2 Dispersion 271 -- 9.2.1 Material Dispersion 271 -- 9.2.2 Waveguide Dispersion 272 -- 9.2.3 Total Dispersion 273 -- 9.3 Attenuation 276 -- 9.4 The Propagation Equation 276 -- 9.5 Selected Solutions to the Propagation Equation 282 -- 9.6 Wavelength Division Multiplexed Beams (WDM) 284 -- 9.6.1 Bit-Parallel WDM Single-Fiber Link 286 -- 9.6.2 Elements of a 12-Bit Parallel WDM System 286 -- 9.6.2.1 The Transmitter 287 -- 9.6.2.2 The Single-Mode Fiber 287 -- 9.6.2.3 The Receiver 289 -- 9.6.3 Design Considerations 289 -- 9.6.3.1 Wavelength Spacing Considerations 289 -- 9.6.3.2 Skew and Walk-off Considerations 289 -- 9.6.3.3 Loss Considerations 289 -- 9.6.4 Experimental Demonstration of a Two Wavelength BP-WDM System 289 -- 10 Solitons and WDM Solitons 295 -- 10.1 Nonlinear Refractive Index 296 -- 10.2 The Nonlinear Pulse Propagation Equation 298 -- 10.3 Solution of the Nonlinear Pulse Propagation Equation 305 -- 10.4 Nonlinear Pulse Propagation for WDM Beams (Cross-Field Modulation Effects) 307 -- 10.4.1 Self-Phase Modulation (SPM) and Cross-Phase Modulation (CPM) 309 -- 10.4.2 Normalized Nonlinear Propagation Equations for WDM Beams 310 -- 10.5 Soliton on a Single Beam 311 -- 10.5.1 Bright Solitons 311 -- 10.5.2 Dark Solitons 313 -- 10.6 Applications of Nonlinear Cross-Field Modulation (CPM) Effect 313 -- 10.6.1 Pulse Shepherding Effect (Dynamic Control of In-Flight Pulses with a Shepherd Pulse) 314 -- 10.6.1.1 Without Shepherd Pulse 315 -- 10.6.1.2 With Shepherd Pulse 316 -- 10.6.2 Enhanced Pulse Compression in a Nonlinear Fiber by a WDM Optical Pulse 319 -- 10.6.2.1 Shepherding and Primary Pulses are all in the Anomalous Dispersion Region 320 -- 10.6.2.2 The Shepherd Pulse is in the Normal Dispersion Region and the Primary Pulse is in the Anomalous Dispersion Regime 326 -- 10.6.2.3 The Shepherd Pulse and Primary Pulses are all in the Normal Dispersion Region 326 -- 10.6.2.4 Additional Simulation Study on WDM Copropagating Pulses 326 -- 10.6.3 Generation of Time-Aligned Picosecond Pulses on Wavelength-Division-Multiplexed Beams in a Nonlinear Fiber 328 -- 10.6.3.1 Generation of Time-Aligned Pulses 329 -- 10.6.3.2 Computer Simulation Results 329 -- 10.6.3.3 Experimental Setup and Results 330 -- 10.6.4 Bit Parallel WDM Solitons 334 -- 11 Ultra Low-Loss Dielectric Waveguides 339 -- 11.1 Theoretical Foundation 339 -- 11.1.1 Normal Mode
Solution 340 -- 11.1.2 Geometrical Loss Factor 340 -- 11.1.3 Relationship between Geometrical Loss Factors for TE-Like Mode and for TM-Like Mode 343 -- 11.1.4 External Field Decay Consideration 343 -- 11.2 Experimental Verification 345 -- 11.3 Example of Low-Loss Terahertz Ribbon Waveguide 350 -- 12 Plasmon (SubWavelength) Waveguides 359 -- 12.1 TM Wave Guidance Along a Metallic Substrate 360 -- 12.2 TM Wave Guidance Along a Metallic Film 365 -- 12.3 Wave Guidance by Metal Ribbons 371 -- 12.4 SPP Waves Along Cylindrical Structures 373 -- 12.4.1 TM Waves 373 -- 12.4.2 HE Waves 381 -- 12.5 Nanofibers (Subwavelength Guiding Structures) 382 -- 13 Photonic Crystal Waveguides 389 -- 13.1 Fundamental Properties of Guided Waves in Periodic Structures 389 -- 13.2 Stop-Band and Pass-Band Property 391 -- 13.3 Dielectric-Rod Array Waveguide 393 -- 13.4 Band Gap and Waveguide Bends 394 -- 13.5 Photonic Bandgap Fiber 396 -- 13.6 Analytic Study of Surface Wave Propagation Along a Periodic Structure 397 -- 14 Metamaterial and Other Waveguides 409 -- 14.1 Moving Dielectric Waveguides 409 -- 14.1.1 Relativity, Lorentz Transformation, and Minkowski Transformation 409 -- 14.1.2 Reflection and Transmission of Electromagnetic Waves by a Moving Plasma Medium 410 -- 14.1.3 Mode Propagation Along Moving Dielectric Slabs 418 -- 14.1.3.1 TE Modes 419 -- 14.1.3.2 TM Modes 420.
الاستعراض: "The Essence of Dielectric Waveguides is a comprehensive overview of the fundamental behavior of dielectric waveguides, essential to interpreting the numerical data results of electromagnetic waveguide problems. A wide range of waveguide coverage, from the familiar types (step-index optical fiber and planar) to the more striking (elliptical and triangular-core fibers), offers readers a rare in-depth look into the dielectric waveguide field." "Readers will find an analysis of important applications in optical communications, such as optical fibers, fiber solitons, WDM shepherd pulses, ultra low-loss THz guides, photonic crystal guides, metamaterial guides, and plasmon sub-wavelength guides. Thorough mathematical treatment, in addition to experimental data and measurements, are provided throughout the chapters as support to the theories discussed. Researchers and engineers involved with optical communications, photonics and applied electromagnetics will find The Essence of Dielectric Waveguides a valuable reference."--Jacket.
المقتنيات
نوع المادة المكتبة الحالية رقم الطلب رقم النسخة حالة تاريخ الإستحقاق الباركود
كتاب كتاب UAE Federation Library | مكتبة اتحاد الإمارات General Collection | المجموعات العامة TK7871.65 .Y44 2008 (إستعراض الرف(يفتح أدناه)) C.1 Library Use Only | داخل المكتبة فقط 30020000016311

Includes bibliographical references (pages 506-507) and indexes.

1.1 Brief Historical Background 1 -- 1.2 Scope of this Book 7 -- 2 Fundamental Electromagnetic Field Equations 11 -- 2.1 Maxwell Equations 11 -- 2.2 The Constitutive Relations 13 -- 2.2.1 Simple Medium (Linear and Isotropic) 14 -- 2.2.2 Anisotropic Medium 15 -- 2.2.3 Left-Handed Medium (Metamaterial) 16 -- 2.2.4 Conducting Medium 16 -- 2.2.5 Dielectric Medium with Loss 17 -- 2.2.6 Nonlinear Medium 18 -- 2.3 Boundary Conditions, Radiation Condition, and Edge Condition 20 -- 2.3.1 Boundary Conditions 20 -- 2.3.2 Radiation Condition 28 -- 2.3.3 Edge Condition 28 -- 2.3.4 Uniqueness Theorem 29 -- 2.4 Energy Relations: Poynting's Vector Theorem 29 -- 2.5 Classification of Fields 32 -- 2.5.1 The Debye Potentials 33 -- 2.5.2 Basic Wave Types 34 -- 2.5.3 Separation of Variables 39 -- 2.5.3.1 Rectangular Coordinates (x, y, z) 39 -- 2.5.3.2 Circular Cylinder Coordinates (r, [theta], z) 40 -- 2.5.3.3 Elliptical Cylinder Coordinates ([xi], [eta], z) 41 -- 2.5.3.4 Parabolic Cylinder Coordinates ([xi], [eta], z) 42 -- 2.6 Polarization of Waves 44 -- 2.6.1 Linearly Polarized Waves 44 -- 2.6.2 Circularly Polarized Waves 44 -- 2.6.3 Elliptically Polarized Waves 44 -- 2.7 Phase Velocity and Group Velocity 44 -- 2.8 The Impedance Concept 46 -- 2.9 Validity of the Scalar Wave Approach 47 -- 3 Propagation Characteristics of Guided Waves Along a Dielectric Guide 55 -- 3.1 Typical Surface Waveguide Structures 55 -- 3.2 Formal Approach to the Surface Waveguide Problems 57 -- 3.3 The [omega]-[beta] Diagram: Dispersion Relations 59 -- 3.4 Geometrical Optics Approach 62 -- 3.5 Attenuation Constant 65 -- 3.5.1 Single Mode Case 66 -- 3.5.2 Multimode Case 68 -- 3.6 Signal Dispersion and Distortion 70 -- 3.7 [alpha] and Q 76 -- 3.8 Excitation of Modes on a Dielectric Waveguide 79 -- 3.8.1 Excitation Through Direct Incidence 79 -- 3.8.1.1 Incident Plane Wave 81 -- 3.8.1.2 Incident Gaussian Beam 82 -- 3.8.2 Excitation Through Efficient Transitions 85 -- 3.9 Coupled Mode Theory 87 -- 3.10 Bends and Corners for Dielectric Waveguides 89 -- 3.11 Systems and Noise 92 -- 4 Planar Dielectric Waveguides 99 -- 4.1 Fundamental Equations 99 -- 4.2 Dielectric Slab Waveguide 100 -- 4.2.1 The TM Surface Wave Modes 101 -- 4.2.1.1 Cutoff Conditions for TM Modes 103 -- 4.2.1.2 Distribution of Guided Power 105 -- 4.2.1.3 Attenuation 106 -- 4.2.2 The TE Surface Wave Mode 107 -- 4.2.3 Special Cases and Numerical Examples 109 -- 4.3 Leaky Wave in a Heteroepitaxial Film Slab Waveguide 112 -- 4.3.1 Leaky Modes along an Asymmetric Dielectric Waveguide 114 -- 4.3.2 Approximate Solutions of the Characteristic Equations 115 -- 4.4 Multilayered Dielectric Slab Waveguides 118 -- 4.5 Coupling Between Two Parallel Dielectric Slab Waveguides 122 -- 4.6 The Sommerfeld-Zenneck Surface Impedance Waveguide 131 -- 5 Circular Dielectric Waveguides 137 -- 5.1 Fundamental Equations 138 -- 5.2 Modes on Uniform Solid Core Circular Dielectric Cylinder 139 -- 5.2.1 Dispersion Relations 141 -- 5.2.2 Cutoff Conditions 144 -- 5.2.3 Attenuation 147 -- 5.2.3.1 The Exact Approach 147 -- 5.2.3.2 The Perturbation Approach 148 -- 5.2.4 Field Configurations 150 -- 5.3 The Sommerfeld-Goubau Wire 152 -- 5.4 Modes on Radially Inhomogeneous Core Circular Dielectric Cylinder 155 -- 5.4.1 Formulation of the Problem 155 -- 5.4.2 Selected Examples 160 -- 5.4.3 Hollow Cylindrical Dielectric Waveguide 165 -- 5.5 Experimental Determination of Propagation Characteristics of Circular Dielectric Waveguides 167 -- 5.5.1 Ultrahigh Q Dielectric Rod Resonant Cavity 167 -- 5.5.2 Measured Results 172 -- 6 Elliptical Dielectric Waveguides 179 -- 6.1 Formulation of the Problem 180 -- 6.2 Boundary Conditions 184 -- 6.3 Mode Classifications 188 -- 6.4 The Dispersion Relations 189 -- 6.4.1 Cutoff Frequencies of Modes 197 -- 6.4.2 Transition to Circular Cross-Section 199 -- 6.4.3 Approximate Characteristic Equations 201 -- 6.4.4 Propagation Characteristics 203 -- 6.4.4.1 The Even Dominant [subscript e]HE[subscript 11] Mode 204 -- 6.4.4.2 The Odd Dominant [subscript o]HE[subscript 11] Mode 205 -- 6.4.4.3 Higher Order [subscript e, o]HE[subscript n'm'] Modes 206 -- 6.4.5 Field Configurations of the Dominant Modes 207 -- 6.4.6 Attenuation Calculation 209 -- 6.5 Weakly Guiding Elliptical Dielectric Waveguides 210 -- 6.6 Experimental Results 214 -- 7 Approximate Methods 221 -- 7.1 Marcatili's Approximate Method 221 -- 7.1.1 Approximate Solution for a Rectangular Dielectric Waveguide 221 -- 7.1.1.1 The E[subscript nm superscript y] Modes 223 -- 7.1.1.2 The E[subscript nm superscript y] Modes 229 -- 7.2 The Circular Harmonics Method 231 -- 7.3 Experimental Measurements 238 -- 8 Inhomogeneous Dielectric Waveguides 241 -- 8.1 Debye Potentials for Inhomogeneous Medium 241 -- 8.1.1 Rectangular Coordinates (x, y, z) 242 -- 8.1.2 Spherical Coordinates (r, [theta], [phi]) 243 -- 8.1.3 Circular Cylindrical Coordinates (p, [theta], z) 244 -- 8.2 Applications 245 -- 8.2.1 Structures with Transverse Inhomogeneity 246 -- 8.2.1.1 Wave Propagation along a Dielectric Slab with [epsilon](x) and [pi subscript o] Immersed in Free-space 246 -- 8.2.1.2 Waves in Metallic Rectangular Waveguide Filled with Transversely Inhomogeneous Dielectrics 249 -- 8.2.1.3 Circularly Symmetric Waves along a Cylindrical Radially Inhomogeneous Dielectric Cylinder 252 -- 8.2.2 Structures with Longitudinal Inhomogeneity 255 -- 8.2.2.1 Longitudinal Periodic Medium 256 -- 8.2.2.2 Solutions to the Hill Equation 259 -- 8.2.2.3 Propagation Characteristics of Type (II) (TM) Waves in Periodic Structures 261 -- 9 Optical Fibers 265 -- 9.1 Weakly Guiding Optical Fibers 265 -- 9.2 Dispersion 271 -- 9.2.1 Material Dispersion 271 -- 9.2.2 Waveguide Dispersion 272 -- 9.2.3 Total Dispersion 273 -- 9.3 Attenuation 276 -- 9.4 The Propagation Equation 276 -- 9.5 Selected Solutions to the Propagation Equation 282 -- 9.6 Wavelength Division Multiplexed Beams (WDM) 284 -- 9.6.1 Bit-Parallel WDM Single-Fiber Link 286 -- 9.6.2 Elements of a 12-Bit Parallel WDM System 286 -- 9.6.2.1 The Transmitter 287 -- 9.6.2.2 The Single-Mode Fiber 287 -- 9.6.2.3 The Receiver 289 -- 9.6.3 Design Considerations 289 -- 9.6.3.1 Wavelength Spacing Considerations 289 -- 9.6.3.2 Skew and Walk-off Considerations 289 -- 9.6.3.3 Loss Considerations 289 -- 9.6.4 Experimental Demonstration of a Two Wavelength BP-WDM System 289 -- 10 Solitons and WDM Solitons 295 -- 10.1 Nonlinear Refractive Index 296 -- 10.2 The Nonlinear Pulse Propagation Equation 298 -- 10.3 Solution of the Nonlinear Pulse Propagation Equation 305 -- 10.4 Nonlinear Pulse Propagation for WDM Beams (Cross-Field Modulation Effects) 307 -- 10.4.1 Self-Phase Modulation (SPM) and Cross-Phase Modulation (CPM) 309 -- 10.4.2 Normalized Nonlinear Propagation Equations for WDM Beams 310 -- 10.5 Soliton on a Single Beam 311 -- 10.5.1 Bright Solitons 311 -- 10.5.2 Dark Solitons 313 -- 10.6 Applications of Nonlinear Cross-Field Modulation (CPM) Effect 313 -- 10.6.1 Pulse Shepherding Effect (Dynamic Control of In-Flight Pulses with a Shepherd Pulse) 314 -- 10.6.1.1 Without Shepherd Pulse 315 -- 10.6.1.2 With Shepherd Pulse 316 -- 10.6.2 Enhanced Pulse Compression in a Nonlinear Fiber by a WDM Optical Pulse 319 -- 10.6.2.1 Shepherding and Primary Pulses are all in the Anomalous Dispersion Region 320 -- 10.6.2.2 The Shepherd Pulse is in the Normal Dispersion Region and the Primary Pulse is in the Anomalous Dispersion Regime 326 -- 10.6.2.3 The Shepherd Pulse and Primary Pulses are all in the Normal Dispersion Region 326 -- 10.6.2.4 Additional Simulation Study on WDM Copropagating Pulses 326 -- 10.6.3 Generation of Time-Aligned Picosecond Pulses on Wavelength-Division-Multiplexed Beams in a Nonlinear Fiber 328 -- 10.6.3.1 Generation of Time-Aligned Pulses 329 -- 10.6.3.2 Computer Simulation Results 329 -- 10.6.3.3 Experimental Setup and Results 330 -- 10.6.4 Bit Parallel WDM Solitons 334 -- 11 Ultra Low-Loss Dielectric Waveguides 339 -- 11.1 Theoretical Foundation 339 -- 11.1.1 Normal Mode

Solution 340 -- 11.1.2 Geometrical Loss Factor 340 -- 11.1.3 Relationship between Geometrical Loss Factors for TE-Like Mode and for TM-Like Mode 343 -- 11.1.4 External Field Decay Consideration 343 -- 11.2 Experimental Verification 345 -- 11.3 Example of Low-Loss Terahertz Ribbon Waveguide 350 -- 12 Plasmon (SubWavelength) Waveguides 359 -- 12.1 TM Wave Guidance Along a Metallic Substrate 360 -- 12.2 TM Wave Guidance Along a Metallic Film 365 -- 12.3 Wave Guidance by Metal Ribbons 371 -- 12.4 SPP Waves Along Cylindrical Structures 373 -- 12.4.1 TM Waves 373 -- 12.4.2 HE Waves 381 -- 12.5 Nanofibers (Subwavelength Guiding Structures) 382 -- 13 Photonic Crystal Waveguides 389 -- 13.1 Fundamental Properties of Guided Waves in Periodic Structures 389 -- 13.2 Stop-Band and Pass-Band Property 391 -- 13.3 Dielectric-Rod Array Waveguide 393 -- 13.4 Band Gap and Waveguide Bends 394 -- 13.5 Photonic Bandgap Fiber 396 -- 13.6 Analytic Study of Surface Wave Propagation Along a Periodic Structure 397 -- 14 Metamaterial and Other Waveguides 409 -- 14.1 Moving Dielectric Waveguides 409 -- 14.1.1 Relativity, Lorentz Transformation, and Minkowski Transformation 409 -- 14.1.2 Reflection and Transmission of Electromagnetic Waves by a Moving Plasma Medium 410 -- 14.1.3 Mode Propagation Along Moving Dielectric Slabs 418 -- 14.1.3.1 TE Modes 419 -- 14.1.3.2 TM Modes 420.

"The Essence of Dielectric Waveguides is a comprehensive overview of the fundamental behavior of dielectric waveguides, essential to interpreting the numerical data results of electromagnetic waveguide problems. A wide range of waveguide coverage, from the familiar types (step-index optical fiber and planar) to the more striking (elliptical and triangular-core fibers), offers readers a rare in-depth look into the dielectric waveguide field." "Readers will find an analysis of important applications in optical communications, such as optical fibers, fiber solitons, WDM shepherd pulses, ultra low-loss THz guides, photonic crystal guides, metamaterial guides, and plasmon sub-wavelength guides. Thorough mathematical treatment, in addition to experimental data and measurements, are provided throughout the chapters as support to the theories discussed. Researchers and engineers involved with optical communications, photonics and applied electromagnetics will find The Essence of Dielectric Waveguides a valuable reference."--Jacket.

شارك

أبوظبي، الإمارات العربية المتحدة

reference@ecssr.ae

97124044780 +

حقوق النشر © 2024 مركز الإمارات للدراسات والبحوث الاستراتيجية جميع الحقوق محفوظة