عرض عادي

Computer vision metrics : survey, taxonomy and analysis of computer vision, visual neuroscience, and deep learning / by Scott Krig.

بواسطة:نوع المادة : نصنصاللغة: الإنجليزية الناشر:Cham : Springer International Publishing : Imprint: Springer, 2016الطبعات:Textbook editionوصف:xviii, 637 pages : illustrations ; 27 cmنوع المحتوى:
  • text
نوع الوسائط:
  • unmediated
نوع الناقل:
  • volume
تدمك:
  • 9783319815954
  • 9783319337623
الموضوع:تصنيف مكتبة الكونجرس:
  • TA1634 .K754 2016
المحتويات:
Image Capture and Representation -- Image Re-processing -- Global and Regional Features -- Local Feature Design Concepts -- Taxonomy of Feature Description Attributes -- Interest Point Detector and Feature Descriptor Survey -- Ground Truth Data, Content, Metrics, and Analysis -- Vision Pipeline and Optimizations -- Feature Learning Architecture Taxonomy and Neuroscience Background -- Feature Learning and Deep Learning Architecture Survey..
ملخص:Based on the successful 2014 book published by Apress, this textbook edition is expanded to provide a comprehensive history and state-of-the-art survey for fundamental computer vision methods and deep learning. With over 800 essential references, as well as chapter-by-chapter learning assignments, both students and researchers can dig deeper into core computer vision topics and deep learning architectures. The survey covers everything from feature descriptors, regional and global feature metrics, feature learning architectures, deep learning, neuroscience of vision, neural networks, and detailed example architectures to illustrate computer vision hardware and software optimization methods. To complement the survey, the textbook includes useful analyses which provide insight into the goals of various methods, why they work, and how they may be optimized. The text delivers an essential survey and a valuable taxonomy, thus providing a key learning tool for students, researchers and engineers, to supplement the many effective hands-on resources and open source projects, such as OpenCV and other imaging and deep learning tools.
المقتنيات
نوع المادة المكتبة الحالية رقم الطلب رقم النسخة حالة تاريخ الإستحقاق الباركود
كتاب كتاب UAE Federation Library | مكتبة اتحاد الإمارات General Collection | المجموعات العامة TA1634 .K754 2016 (إستعراض الرف(يفتح أدناه)) C.1 Library Use Only | داخل المكتبة فقط 30030000003031
كتاب كتاب UAE Federation Library | مكتبة اتحاد الإمارات General Collection | المجموعات العامة TA1634 .K754 2016 (إستعراض الرف(يفتح أدناه)) C.2 المتاح 30030000003032

Image Capture and Representation -- Image Re-processing -- Global and Regional Features -- Local Feature Design Concepts -- Taxonomy of Feature Description Attributes -- Interest Point Detector and Feature Descriptor Survey -- Ground Truth Data, Content, Metrics, and Analysis -- Vision Pipeline and Optimizations -- Feature Learning Architecture Taxonomy and Neuroscience Background -- Feature Learning and Deep Learning Architecture Survey..

Based on the successful 2014 book published by Apress, this textbook edition is expanded to provide a comprehensive history and state-of-the-art survey for fundamental computer vision methods and deep learning. With over 800 essential references, as well as chapter-by-chapter learning assignments, both students and researchers can dig deeper into core computer vision topics and deep learning architectures. The survey covers everything from feature descriptors, regional and global feature metrics, feature learning architectures, deep learning, neuroscience of vision, neural networks, and detailed example architectures to illustrate computer vision hardware and software optimization methods. To complement the survey, the textbook includes useful analyses which provide insight into the goals of various methods, why they work, and how they may be optimized. The text delivers an essential survey and a valuable taxonomy, thus providing a key learning tool for students, researchers and engineers, to supplement the many effective hands-on resources and open source projects, such as OpenCV and other imaging and deep learning tools.

شارك

أبوظبي، الإمارات العربية المتحدة

reference@ecssr.ae

97124044780 +

حقوق النشر © 2024 مركز الإمارات للدراسات والبحوث الاستراتيجية جميع الحقوق محفوظة